3.2568 \(\int x^{-1+7 n} (a+b x^n)^8 \, dx\)

Optimal. Leaf size=150 \[ \frac{15 a^2 \left (a+b x^n\right )^{13}}{13 b^7 n}-\frac{5 a^3 \left (a+b x^n\right )^{12}}{3 b^7 n}+\frac{15 a^4 \left (a+b x^n\right )^{11}}{11 b^7 n}-\frac{3 a^5 \left (a+b x^n\right )^{10}}{5 b^7 n}+\frac{a^6 \left (a+b x^n\right )^9}{9 b^7 n}+\frac{\left (a+b x^n\right )^{15}}{15 b^7 n}-\frac{3 a \left (a+b x^n\right )^{14}}{7 b^7 n} \]

[Out]

(a^6*(a + b*x^n)^9)/(9*b^7*n) - (3*a^5*(a + b*x^n)^10)/(5*b^7*n) + (15*a^4*(a + b*x^n)^11)/(11*b^7*n) - (5*a^3
*(a + b*x^n)^12)/(3*b^7*n) + (15*a^2*(a + b*x^n)^13)/(13*b^7*n) - (3*a*(a + b*x^n)^14)/(7*b^7*n) + (a + b*x^n)
^15/(15*b^7*n)

________________________________________________________________________________________

Rubi [A]  time = 0.0780009, antiderivative size = 150, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.118, Rules used = {266, 43} \[ \frac{15 a^2 \left (a+b x^n\right )^{13}}{13 b^7 n}-\frac{5 a^3 \left (a+b x^n\right )^{12}}{3 b^7 n}+\frac{15 a^4 \left (a+b x^n\right )^{11}}{11 b^7 n}-\frac{3 a^5 \left (a+b x^n\right )^{10}}{5 b^7 n}+\frac{a^6 \left (a+b x^n\right )^9}{9 b^7 n}+\frac{\left (a+b x^n\right )^{15}}{15 b^7 n}-\frac{3 a \left (a+b x^n\right )^{14}}{7 b^7 n} \]

Antiderivative was successfully verified.

[In]

Int[x^(-1 + 7*n)*(a + b*x^n)^8,x]

[Out]

(a^6*(a + b*x^n)^9)/(9*b^7*n) - (3*a^5*(a + b*x^n)^10)/(5*b^7*n) + (15*a^4*(a + b*x^n)^11)/(11*b^7*n) - (5*a^3
*(a + b*x^n)^12)/(3*b^7*n) + (15*a^2*(a + b*x^n)^13)/(13*b^7*n) - (3*a*(a + b*x^n)^14)/(7*b^7*n) + (a + b*x^n)
^15/(15*b^7*n)

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int x^{-1+7 n} \left (a+b x^n\right )^8 \, dx &=\frac{\operatorname{Subst}\left (\int x^6 (a+b x)^8 \, dx,x,x^n\right )}{n}\\ &=\frac{\operatorname{Subst}\left (\int \left (\frac{a^6 (a+b x)^8}{b^6}-\frac{6 a^5 (a+b x)^9}{b^6}+\frac{15 a^4 (a+b x)^{10}}{b^6}-\frac{20 a^3 (a+b x)^{11}}{b^6}+\frac{15 a^2 (a+b x)^{12}}{b^6}-\frac{6 a (a+b x)^{13}}{b^6}+\frac{(a+b x)^{14}}{b^6}\right ) \, dx,x,x^n\right )}{n}\\ &=\frac{a^6 \left (a+b x^n\right )^9}{9 b^7 n}-\frac{3 a^5 \left (a+b x^n\right )^{10}}{5 b^7 n}+\frac{15 a^4 \left (a+b x^n\right )^{11}}{11 b^7 n}-\frac{5 a^3 \left (a+b x^n\right )^{12}}{3 b^7 n}+\frac{15 a^2 \left (a+b x^n\right )^{13}}{13 b^7 n}-\frac{3 a \left (a+b x^n\right )^{14}}{7 b^7 n}+\frac{\left (a+b x^n\right )^{15}}{15 b^7 n}\\ \end{align*}

Mathematica [A]  time = 0.054637, size = 127, normalized size = 0.85 \[ \frac{\frac{28}{9} a^6 b^2 x^{9 n}+\frac{28}{5} a^5 b^3 x^{10 n}+\frac{70}{11} a^4 b^4 x^{11 n}+\frac{14}{3} a^3 b^5 x^{12 n}+\frac{28}{13} a^2 b^6 x^{13 n}+a^7 b x^{8 n}+\frac{1}{7} a^8 x^{7 n}+\frac{4}{7} a b^7 x^{14 n}+\frac{1}{15} b^8 x^{15 n}}{n} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(-1 + 7*n)*(a + b*x^n)^8,x]

[Out]

((a^8*x^(7*n))/7 + a^7*b*x^(8*n) + (28*a^6*b^2*x^(9*n))/9 + (28*a^5*b^3*x^(10*n))/5 + (70*a^4*b^4*x^(11*n))/11
 + (14*a^3*b^5*x^(12*n))/3 + (28*a^2*b^6*x^(13*n))/13 + (4*a*b^7*x^(14*n))/7 + (b^8*x^(15*n))/15)/n

________________________________________________________________________________________

Maple [A]  time = 0.022, size = 135, normalized size = 0.9 \begin{align*}{\frac{{b}^{8} \left ({x}^{n} \right ) ^{15}}{15\,n}}+{\frac{4\,{b}^{7}a \left ({x}^{n} \right ) ^{14}}{7\,n}}+{\frac{28\,{b}^{6}{a}^{2} \left ({x}^{n} \right ) ^{13}}{13\,n}}+{\frac{14\,{a}^{3}{b}^{5} \left ({x}^{n} \right ) ^{12}}{3\,n}}+{\frac{70\,{a}^{4}{b}^{4} \left ({x}^{n} \right ) ^{11}}{11\,n}}+{\frac{28\,{a}^{5}{b}^{3} \left ({x}^{n} \right ) ^{10}}{5\,n}}+{\frac{28\,{a}^{6}{b}^{2} \left ({x}^{n} \right ) ^{9}}{9\,n}}+{\frac{b{a}^{7} \left ({x}^{n} \right ) ^{8}}{n}}+{\frac{{a}^{8} \left ({x}^{n} \right ) ^{7}}{7\,n}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(-1+7*n)*(a+b*x^n)^8,x)

[Out]

1/15*b^8/n*(x^n)^15+4/7*a*b^7/n*(x^n)^14+28/13*a^2*b^6/n*(x^n)^13+14/3*a^3*b^5/n*(x^n)^12+70/11*a^4*b^4/n*(x^n
)^11+28/5*a^5*b^3/n*(x^n)^10+28/9*a^6*b^2/n*(x^n)^9+a^7*b/n*(x^n)^8+1/7*a^8/n*(x^n)^7

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(-1+7*n)*(a+b*x^n)^8,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.34162, size = 301, normalized size = 2.01 \begin{align*} \frac{3003 \, b^{8} x^{15 \, n} + 25740 \, a b^{7} x^{14 \, n} + 97020 \, a^{2} b^{6} x^{13 \, n} + 210210 \, a^{3} b^{5} x^{12 \, n} + 286650 \, a^{4} b^{4} x^{11 \, n} + 252252 \, a^{5} b^{3} x^{10 \, n} + 140140 \, a^{6} b^{2} x^{9 \, n} + 45045 \, a^{7} b x^{8 \, n} + 6435 \, a^{8} x^{7 \, n}}{45045 \, n} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(-1+7*n)*(a+b*x^n)^8,x, algorithm="fricas")

[Out]

1/45045*(3003*b^8*x^(15*n) + 25740*a*b^7*x^(14*n) + 97020*a^2*b^6*x^(13*n) + 210210*a^3*b^5*x^(12*n) + 286650*
a^4*b^4*x^(11*n) + 252252*a^5*b^3*x^(10*n) + 140140*a^6*b^2*x^(9*n) + 45045*a^7*b*x^(8*n) + 6435*a^8*x^(7*n))/
n

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(-1+7*n)*(a+b*x**n)**8,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b x^{n} + a\right )}^{8} x^{7 \, n - 1}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(-1+7*n)*(a+b*x^n)^8,x, algorithm="giac")

[Out]

integrate((b*x^n + a)^8*x^(7*n - 1), x)